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Abstract

❦ The 3D-consistency property is usually formulated as the
Consistency-Around-a-Cube for discrete equations on a square lattice
(quad-equations). However, this property can be extended to some other types of
equations, including continuous ones.

❦ In my talk, I will show that a multidimensional lattice governed by consistent
quad-equations can carry some derivations that preserve this lattice and
commute with each other. They are described by continuous equations of the
KdV type and di�erential-di�erence equations of the Volterra lattice and dressing
chain types, which are no less important objects than quad-equations.

❦ In principle, these equations can be obtained from quad-equations by
continuous limits, but in my talk I will move in the opposite direction, interpreting
quad-equations as the superposition formula for B�acklund transformations.

❦ Particular attention will be paid to the interpretation of Volterra-type
equations as negative symmetries for KdV-type equations and to the de�nition of
3D-consistency property for these symmetries.
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Outline

ut = uxxx + f (u, ux , uxx) KdV type

un,z = g(un−1, un, un+1) Volterra lattice type

h(un, un+1, un,x , un+1,x ;α) = 0 dressing chain type

uxxz = F (u, ux , uxx , uz , uxz ;α) negative symmetry

Q(uni ,nj , uni+1,nj , uni ,nj+1, uni+1,nj+1;αi , αj) = 0 quad-equation

Main claim: there exist consistent sets of such equations. Presumably, such a set
can be attached to any integrable KdV type equation.

Consistency means that it is possible to construct a function

u(x , t, z1, z2, . . . , n1, n2, . . . )

which satis�es all these equations with generic initial data given along x- and
ni -axes:

u(x , 0, 0, 0) = φ(x), u(0, 0, 0, 0î ) = φi (ni ).
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Simplest example

ut = uxxx − 6u2x (1)

un,z =
β

un+1 − un−1

(2)

un+1,x + un,x = (un+1 − un)
2 + α (3)

uxxz =
u2xz − β2

2uz
+ 2(2ux − α)uz (4)

(uni ,nj − uni+1,nj+1)(uni+1,nj − uni ,nj+1) = αi − αj (5)

(1): the potential Korteweg�de Vries equation (pot-KdV)
(2): a particular case of V4(0) equation from the Yamilov list
(3): equivalent to the dressing chain for Schr�odinger operator
(4): the associated Camassa�Holm equation
(5): H1 from the Adler�Bobenko�Suris list
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Remarks

In this talk, we consider KdV, dressing chain and VL as basic building blocks
from which quads and negs are derived:

❦ quad-equation is the superposition formula for B�acklund transformations
de�ned by dressing chain;

❦ negative �ow is obtained from VL and dressing chain by elimination of n
(associated system, in terminology by D. Levi).

However, this is not the only possible point of view. Vice versa, one can consider
quad-equations and negative �ow as main objects and starting points:

❦ all other equations can be obtained from the quad-equation by continuous
limits;

❦ negative symmetry is a generating function for the whole KdV-type hierarchy.
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Big picture
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The full picture is even bigger and includes also

❦ noncommutative symmetries from additional subalgebra (master-symmetries);

❦ NLS-type systems associated with higher symmetries of VL (or symmetries of
uxxz = . . . with respect to z-characteristic).

The talk is based mainly on the papers

[1] V.A., A.B. Shabat. Toward a theory of integrable hyperbolic equations of third order. J.
Phys. A: Math. Theor.45 (2012) 395207.

[2] V.A., M.P. Kolesnikov. Non-autonomous reductions of the KdV equation and
multi-component analogs of the Painlev�e equations P34 and P3. J. Math. Phys. 64 (2023)
101505.

[3] V.A. Negative �ows and non-autonomous reductions of the Volterra lattice. Open Comm.
in Nonl. Math. Phys., Special Issue in Memory of Decio Levi (2024) 11597.

[4] V.A. Negative �ows for several integrable models. J. Math. Phys. 65 (2024) 023502.

[5] V.A. 3D consistency of negative �ows. Theor. Math. Phys. 221:2 (2024) 1836�1851.
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KdV type equations (S-integrable)

ut = uxxx + uux (KdV)

ut = uxxx + u2ux (mKdV)

ut = uxxx + u2x (pot-KdV)

ut = uxxx −
1

2
u3x + (αe2u + βe−2u)ux (exp-CD)

ut = uxxx −
3ux(uxx + r ′(u))2

2(u2x + 2r(u))
+ r ′′(u)ux , r (5) = 0 (℘-CD)

ut = uxxx −
3(u2xx + r(u))

2ux
, r (5) = 0 (KN)

ut = uxxx −
3uxu

2

xx

2(u2x + 1)
+ α(u2x + 1)3/2 + βu3x

ut = uxxx −
3u2xx
4ux

+ αu3/2x + βu2x
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❦ Integrability is understood as existence of in�nite hierarchy of higher
symmetries.

❦ A complete list includes also several C-integrable (linearizable) equations.

❦ All equations from the list are related to KdV by di�erential substitutions, with
the exception of KN.

[6] S.I. Svinolupov, V.V. Sokolov. Evolution equations with nontrivial conservation laws.
Funct. Anal. Appl. 16:4 (1982) 317�319.

[7] A.V. Mikhailov, A.B. Shabat, V.V. Sokolov. The symmetry approach to classi�cation of
integrable equations. in: V.E. Zakharov (ed). What is Integrability? Springer-Verlag, 1991,
pp. 115�184.

[8] A.G. Meshkov, V.V. Sokolov. Integrable evolution equations with constant separant. Ufa
Math. J. 4:3 (2012) 104�154.
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Hyperbolic symmetries

It is well known that many KdV type equations are consistent with equations of
the form

uxy = h(u, ux , uy ). (6)

The most famous example is, of course, sine-Gordon + pot-mKdV:

uxy = sin 2u, ut = uxxx + 2u3x , uτ = uyyy + 2u3y .

Here, consistency = commutativity of the derivations Dx ,Dy ,Dt ,Dτ acting on
functions of dynamical variables u, ux , uxx , . . . , uy , uyy , . . . .

Paper [9] contains an exhaustive list of such triples.

However, there is no such symmetry for the KdV equation itself.

Why?

[9] A.G. Meshkov, V.V. Sokolov. Hyperbolic equations with third-order symmetries. Theor.
Math. Phys. 166:1 (2011) 43�75.
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Negative symmetries

A lesser known fact is that any (integrable) KdV type equation is consistent with
an equation of the form

uxxz = F (u, ux , uxx , uz , uxz ;α). (7)

Again, this means that Dx ,Dz ,Dt commute on the extended dynamical set
u, ux , uxx , uxxx , . . . , uz , uxz .

In this case, we say that (7) de�nes a negative symmetry for the KdV type
equation. This terminology is due to the fact that (7) can be derived with the
help of negative power of recursion operator, as we will see soon.

It turns out that hyperbolic equations (6) are special reductions (which do not
always exist) of (7).

Remarks

❦ For equations with variable separant (like Dym equation ut = u3uxxx),
equation (7) may involve uxxx .

❦ In this talk, we do not touch the symmetry of (7) with respect to the
z-characteristic (which is equivalent to some NLS-type equation).
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Example 1. The pot-mKdV ut = uxxx + 2u3x is consistent with equation

uxxz = 2ux
√
αu2z + 2βuz + γ − u2xz + αuz + β

for any α, β, γ. In the particular case α = β = 0, it admits a �rst integral. We
denote z = y for this set of parameters and set γ = 1 by scaling. Then

uxxy√
1− u2xy

= 2ux ⇔ arcsin uxy = 2u + C (y)

and the change u + C (y)/2 = ũ (admissible by pot-mKdV) brings to the
sine-Gordon equation.

Example 2. The KdV equation ut = uxxx − 6uux is consistent with

uxxz =
ux

2(u − α)

(
uxz +

√
u2xz − 4(u − α)(u2z − γ)

)
+ 4(u − α)uz (8)

for any α, γ. However, there are no reductions in this case, for any values of
parameters, which follows from the classi�cation results of [9].
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Negative symmetry = (R − µ)−1(0)

The origin of (7) is quite simple: given any integrable evolution equation

ut = F

admitting a recursion operator R, one can de�ne the �ow

uz = (R − µ)−1(0) ⇔ R(uz) = µuz (9)

where µ is an arbitrary parameter. Since ut0 = 0 is a trivial symmetry, (9) should
be symmetry as well, by de�nition of R.

The only problem is that it is not local. However, we can somehow rewrite it,
abandoning the evolutionary form of the equation.

❦ This works also for NLS, Boussinesq and other equations [10, 11, 4].

[10] A.M. Kamchatnov, M.V. Pavlov. On generating functions in the AKNS hierarchy. Phys.
Lett. A 301:3�4 (2002) 269�274.

[11] S.Y. Lou, M. Jia. From one to in�nity: symmetries of integrable systems. JHEP 02 (2024)
172.
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Simplest example: pot-KdV

Let us consider again the KdV equation:

ut = uxxx − 6uux . (KdV)

The recursion operator
R = D2

x − 4u − 2uxD
−1

x

generates the positive part of the hierarchy:

ut1 = R(0) = ux translation on x

ut2 = R(ux) = uxxx − 6uux KdV

ut3 = R2(ux) = (uxxxx − 10uuxx − 5u2x + 10u3)x , . . . higher symmetries

The negative symmetry (with µ = −4α) reads (R + 4α)(uz) = 0, that is

uxxz − 4(u − α)uz − 2uxD
−1

x (uz) = 0 ⇔ uxxxz = . . . (10)

This can be once integrated and (8) appears with γ as the integration constant.
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Equation (8) is somewhat disappointing: it is too cumbersome compared to the
KdV equation itself. We can cast it into much simpler form by passing to the
potential v by substitution

u = 2vx , q = D−1

x (uz) = 2vz .

Then (10) takes the form

vxxxz − 4(2vx − α)vxz − 4vxzvz = 0

and integrating with factor vz brings to the following consistent pair:

vt = vxxx − 6v2x , (pot-KdV)

2vzvxxz − v2xz − 4(2vx − α)v2z + γ = 0. (11)

The latter equation is known as the associated Camassa�Holm equation.

[12] J. Schi�. The Camassa�Holm equation: a loop group approach. Physica D 121:1�2

(1998) 24�43.

[13] A.N.W. Hone. The associated Camassa�Holm equation and the KdV equation. J. Phys. A:
Math. Gen. 32:27 (1999) L307�314.
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Generating function for higher symmetries

An important property of a negative symmetry is that its formal expansion in
powers of µ can be viewed as a generating function for higher symmetries:

uz = (R − µ)−1(0) = −µ−1(1+ µ−1R + µ−2R2 + . . . )(0)

= −µ−2ut0 − µ−3ut1 − µ−4ut2 − . . .

In particular, the higher symmetries of KdV are of the form uti = q
(i+1)
x where

q(i) are coe�cients of the formal series

q = q(0) +
q(1)

µ
+

q(2)

µ2
+ . . . , q(0) = −1

2

which satis�es (11) with 2vx = u and 2vz = q:

2qqxx − q2x − (4u + µ)q2 +
µ

4
= 0.

This is equivalent to the well-known quadratic recurrence relations

q(i+1) =
i∑

s=0

(
q(s)x q(i−s)

x − 2q(s)q(i−s)
xx + 4uq(s)q(i−s)

)
+

i∑
s=1

q(s)q(i+1−s).
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❦ In fact, q is the resolvent of the Sturm�Liouville operator L = −D2

x + u, with
µ playing the role of spectral parameter [14].

❦ Also, q can be represented as q = ψφ where Lψ = µψ, Lφ = µφ (squared
eigenfunction symmetry) [15].

[14] I.M. Gel'fand, L.A. Dikii. Asymptotic properties of the resolvent of Sturm�Liouville
equations, and the algebra of Korteweg�de Vries equations. Russian Math. Surveys 30:5
(1975) 77�113.

[15] A.Yu. Orlov, S. Rauch-Wojciechowski. Dressing method, Darboux transformation and
generalized restricted �ows for the KdV hierarchy. Physica D 69:1�2 (1993) 77�84.
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Do negative symmetries commute with each other?

We know that positive higher symmetries of KdV are commutative.

The negative �ow for KdV contains the parameter α and the �ows with di�erent
α are di�erent (other parameters are not very important).

It is clear that these �ows must commute, because they can be viewed as series
in α with coe�cients given by commutative higher symmetries.

Conversely, if negative symmetries with di�erent α are commutative, then this
implies commutativity of the whole positive hierarchy.

Is it possible to prove the commutativity of negative symmetries independently,
without resorting to recursion operators and higher symmetries?

Let us forget about KdV-type equations at all. Let equations be given

uxxzi = Fi (u, ux , uxx , uxxx , uzi , uxzi ), i ∈ I ;

we wish to de�ne a correct notion of consistency for such a set of equations.
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Example: Ferpontov's triple of hyperbolic equations

The following triple is 3D consistent:

uxy = sinh u
√

1+ u2x , uyz = cosh u
√

1+ u2z , uxz =
√

1+ u2x
√

1+ u2z .

The cross derivatives for each pair of equations coincide, assuming that the rest
equation holds. For instance, for the �rst and second eqs:

(uxy )z − (uxz)y = (uxz −
√

1+ u2x
√

1+ u2z )

(
uz cosh u√
1+ u2z

− ux sinh u√
1+ u2x

)
,

which vanishes due to the third equation. The third equation is recovered in this
way, since the second factor contains lower derivatives and can be cancelled. The
same is true for any pair.

In other words, in order to de�ne consistency of two equations, we have to
include the third equation into the de�nition. The same idea works for
uxxz -equations, with technical complications.

[16] E.V. Ferapontov. Laplace transformations of hydrodynamic-type systems in Riemann
invariants: periodic sequences. J. Phys. A 30:19 (1997) 6861�6878.
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3D consistency of negative symmetries

De�nition. Equations

uxxzi = Fi (u, ux , uxx , uxxx , uzi , uxzi ), i ∈ I , (12)

are 3D consistent if there exist additional equations

uzi zj = Gij(u, ux , uxx , uzi , uxzi , uzj , uxzj ), i ̸= j , (13)

such that Gij = Gji and for di�erent i , j , k ∈ I ,

Dzi (Fj) = Dzj (Fi ) = D2

x (Gij), (14)

Dzi (Gjk) = Dzj (Gik) = Dzk (Gij), (15)

identically in virtue of (12), (13) and the di�erential consequences
uxxxzi = Dx(Fi ), uxzi zj = Dx(Gij).

This implies the coincidence of any mixed derivatives, which guarantees the
existence of local simultaneous equations for the whole set of equations.
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Is this de�nitions constructive? Yes: equations (13) are not given in advance, but
they can be recovered, if they exist.

First step: examine the condition (uxxzi )zj = (uxxzj )zi , that is

0 = Dzi (Fj)− Dzj (Fi ) = Pij(u, ux , uxx , uxxx , uzi , uxzi , uzj , uxzj , uzi zj , uxzi zj )

where the derivatives uxxxz and uxxz in the r.h.s. are eliminated by (12). By
solving this with respect to uxzi zj , we get

uxzi zj = Hij(u, ux , uxx , uxxx , uzi , uxzi , uzj , uxzj , uzi zj ). (16)

This should be a corollary of (13) and this gives the next condition.

Second step: examine the condition (uxzi zj )x = (uxxzi )zj , that is

0 = Dx(Hij)− Dzj (Fi ) = Qij(u, ux , uxx , uxxx , uxxxx , uzi , uxzi , uzj , uxzj , uzi zj )

where uxxxz , uxxz and uxzi zj are eliminated. By solving with respect to uzi zj , we
obtain the desired equation (13).

Final step: check the equalities (uzi zj )x = uxzi zj and (uzi zj )zk = (uzi zk )zj by
straightforward calculation.
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Example: pot-KdV

Proposition. The following equations are 3D consistent:

uxxzi =
u2xzi − γi
2uzi

+ 2(2ux − αi )uzi , (17)

uzi zj =
uziuxzj − uzjuxzi

αi − αj
, αi ̸= αj . (18)

Let us illustrate the algorithm of derivation of additional eqs (18). On the �rst
step, (uxxzi )zj = (uxxzj )zi provides an expression for uxzi zj :

uxzi zj =

(
2(αi − αj)uziuzj +

γjuzi
2uzj

−
γiuzj
2uzi

)
uzi zj

uzjuxzi − uziuxzj

+
1

2

(
uxzi
uzi

+
uxzj
uzj

)
uzi zj + 4uziuzj .

(19)
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Second step: (uxzi zj )x = (uxxzi )zj yields the factorized equation (cf. with the
Ferapontov's example)

((αi − αj)uzi zj + uzjuxzi − uziuxzj )×

×
(u2ziu

2

xzj − u2zju
2

xzi − 4(αi − αj)u
2

ziu
2

zj + γiu
2

zj − γju
2

zi )

(uzjuxzi − uziuxzj )
2

= 0.

By setting the �rst factor to zero, we obtain (18).

Next, we verify that (uzi zj )x = uxzi zj is an identity. Derivation of (18) with respect
to x gives

uxzi zj = 2uziuzj +
1

2(αi − αj)

(
uzi
uzj

(u2xzj − γj)−
uzj
uzi

(u2xzi − γi )
)
.

This coincides with (19) after substituting uzi zj from (18), that is (19) follows
from (18) and (17).

Finally, we verify the identities (15), that is (uzi zj )zk = (uzi zk )zj which completes
the proof of 3D consistency.
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Remark. Equation (18)

uzi zj =
uziuxzj − uzjuxzi

αi − αj
, αi ̸= αj

is an independent 3D integrable equation related with the Alonso�Shabat
universal hydrodynamic hierarchy [17]. It satis�es the identity [18]

(uzi zj )zk = (uzi zk )zj .

To prove it, equations (17) are not needed: they only de�ne a 2D reduction of
this 3D equation.

[17] L. Mart��nez Alonso, A.B. Shabat. Hydrodynamic reductions and solutions of the universal
hierarchy. Theor. Math. Phys. 140:2 (2004) 1073�1085.

[18] V.E. Adler, A.B. Shabat. Model equation of the theory of solitons. Theor. Math. Phys.
153:1 (2007) 1373�1387.
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Negative symmetry(x , z ;α) =
Volterra lattice(Xn, z)

dressing chain(Xn, x ;α)

KdV
x,t

dressing chain
n,x

{{
negative �ow

x,z
Volterra lattice

n,z
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Volterra type lattice equations

Main part of the list:

un,z = P(un)(un+1 − un−1) V1

un,z = P(u2n)

(
1

un+1 + un
− 1

un + un−1

)
V2

un,z = Q(un)

(
1

un+1 − un
+

1

un − un−1

)
V3

un,z =
R(un−1, un, un−1) + νR(un+1, un, un+1)

1

2R(un−1, un, un−1)
1

2

un+1 − un−1

V4(ν)

plus several more potential forms.

Íere ν = 0,±1 and

P ′′′(u) = 0, Q(5)(u) = αu4 + βu3 + γu2 + δu + ε,

R(u, v ,w) = (αv2 + 2βv + γ)uw + (βv2 + λv + δ)(u + w) + γv2 + 2δv + ε.
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❦ This list was obtained by Yamilov [19, 20] almost simultaneously with the
classi�cation of KdV type equations.

❦ There is a lot of parallels between the continuous and discrete theories, but
there is also a lot of di�erences. In general, these classes of equations can be
studied independently.

❦ Our goal is to demonstrate how one can put together the KdV and Volterra
classes. To do this we need one more class of equations: dressing chains.

[19] R.I. Yamilov. On classi�cation of discrete evolution equations. Uspekhi Math. Nauk 38:6

(1983) 155�156.

[20] R.I. Yamilov. Symmetries as integrability criteria for di�erential di�erence equations. J.
Phys. A 39:45 (2006) R541�623.
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Dressing chains

These are equations of the form

h(un, un+1, un,x , un+1,x ;α) = 0 (20)

which can be viewed as di�erential-di�erence analog of hyperbolic equations
uxy = h(u, ux , uy ).

We assume that this equation can be solved with respect to the derivatives, so
that it can be also written in two equivalent forms

un+1,x = a(un+1, un, un,x ;α), un−1,x = b(un−1, un, un,x ;α).

Equation (20) may admit evolution symmetries of both KdV and Volterra type

ut = uxxx + f (u, ux , uxx), un,z = g(un−1, un, un+1).

This means that Dt or Dz derivative of (20) vanishes in virtue of this equation
itself.
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❦ The role of dressing chains as x-part of B�acklund transformations for the KdV
type equations is commonly known.

❦ The consistency of dressing chains with Volterra type equations was studied,
e.g. in [21, 22, 23], but this topic is much less popular so far.

[21] R.I. Yamilov. Invertible changes of variables generated by B�acklund transformations.
Theor. Math. Phys. 85:3 (1990) 1269�1275.

[22] R.N. Garifullin, I.T. Habibullin, R.I. Yamilov. Peculiar symmetry structure of some known
discrete nonautonomous equations. J. Phys. A: Math. Theor. 48:23 (2015) 235201.

[23] R.N. Garifullin, I.T. Habibullin. Generalized symmetries and integrability conditions for
hyperbolic type semi-discrete equations. J. Phys. A: Math. Theor. 54:20 (2021) 205201.
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Derivation of negative symmetry from lattice equations

Let a pair of consistent equations be given

h(un, un+1, un,x , un+1,x ;α) = 0, un,z = g(un−1, un, un+1). (21)

We want to get rid of variables un±1 and demonstrate that u = un satis�es an
equation of the form

uxxz = F (u, ux , uxx , uz , uxz ;α). (22)

To do this, we �rst solve the �rst equation (21) and its copy for n = n − 1 with
respect to un±1,x . Let

un+1,x = a(un+1, un, un,x ;α), un−1,x = b(un−1, un, un,x ;α). (23)

Then we di�erentiate second equation (21) with respect to x and replace un±1,x .
This gives us two equations free of un±1,x :

un,z = g(un−1, un, un+1), un,xz = G (x , un,x , un−1, un, un+1),

which is a system with respect to un−1 and un+1.
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If the Jacobian of this system with respect to un±1 vanishes then both variables
eliminate and we arrive to an equation for un of the form uxz = . . . , which is a
degenerate case of negative symmetry.

However, generically, the Jacobian is not zero and then it is possible to �nd un+1

as a function of un, un,x , un,z , un,xz . Then di�erentiating once more and
substituting to the �rst equation (23) yields (22).

In other words, the negative �ow (22) can be viewed as a quotient equation: it is
a Volterra type �ow modulo dressing chain

negative �ow(x , z ;α) =
Volterra lattice(n, z)

dressing chain(n, x ;α)
.
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Example: pot-KdV

The B�acklund transformation for pot-KdV

ut = uxxx − 6u2x

is very well known [24]: it is given by the dressing chain

un+1,x + un,x = (un+1 − un)
2 + α.

One can easily check that these equations are consistent with each other and
with V4(0) where R(u, v ,w) = β

un,z =
β

un+1 − un−1

,

and that elimination of n brings to already familiar negative symmetry

uxxz =
u2xz − β2

2uz
+ 2(2ux − α)uz .

[24] H.D. Wahlquist, F.B. Estabrook. B�acklund transformations for solutions of the
Korteweg�de Vries equation. Phys. Rev. Let. 31:23 (1973) 1386�1390.
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It turns out that the same Volterra lattice is also consistent with other equations:
the Schwarzian-KdV

ut = uxxx −
3u2xx
2ux

,

and
un,xun+1,x = 1.

Of course, the latter one can hardly be considered as genuine B�acklund
transformation because it is integrated to the trivial change un+2 = un + const.
However, formally these equations constitute a consistent triple and elimination
of n brings in this case to equation

uxz = 0

which is consistent with Schwarzian-KdV indeed.

The generic lattices consistent with Schwarzian-KdV are

un,xun+1,x = α(un − un+1)
2, un,z = β

(un+1 − un)(un − un−1)

un+1 − un−1

and the corresponding negative �ow is

uxxz =
u2xz − β2u2x

2uz
+

uxxuxz
ux

+ 2αuz .
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Conjecture

❦ Any equation from the KdV list is consistent with some dressing chain and a
Volterra type lattice equation.

❦ Vice versa, any equation from the Volterra list is consistent with some
dressing chain and a KdV type equation.

The open problem is to classify all possible consistent sets of these equations.

The previous example demonstrates that this correspondence between the lists is
not a bijection. However, the deviations from bijection are probably related with
`degenerated' equations only.
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Assembling all together

KdV
x,t

(R−α)−1

##

dressing chain
n,x

��

quad-equation
ni,nj

negative �ow
x,z

��

Volterra lattice
n,z

sin-Gordon
x,y

3D-consistency
zi,zj,zk/ni,nj,nk
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Explaining 3D-consistency

The appearance of dressing chains makes it clear that the 3D-consistency of
negative symmetries is closely related to the 3D-consistency of quad-equations
which de�ne the nonlinear superposition principle for B�acklund transformations.

For the pot-KdV example, the superposition formula for the dressing chain is

(u − TiTj(u))(Ti (u)− Tj(u)) = αi − αj (H1)

where Ti : u(. . . , ni , . . . ) 7→ u(. . . , ni + 1, . . . ).

These equations are de�ned for each pair i , j and should be consistent around a
cube in order to de�ne a generic solution on the multi-dimensional lattice
(n1, n2, . . . ). Each variable ni corresponds to the pair of equations

Ti (ux) + ux = (Ti (u)− u)2 + αi , uzi =
βi

Ti (u)− T−1

i (u)
,

so that each coordinate ni is associated with the negative �ow ∂zi with
parameters αi , βi . The consistency of negative �ows becomes just a corollary of
the consistency of these building blocks.
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Consistency around a cube

0 i

j ij

k ik

jk ijk

Let us recall that for the discrete hyperbolic
equations

uij = h(u, ui , uj ;αi , αj)

the consistency is de�ned for a triple of
equations de�ned on the faces of a cube. For
short, we use subscript i to denote Ti :

ui = Ti (u) = u(. . . , ni + 1, . . . ).

Three possible ways to compute uijk from
initial data u, ui , uj , uk should give the same
results.

A list of 3D-consistent equations was ontained in [25], under many additional
assumptions.

[25] V.A., A.I. Bobenko, Yu.B. Suris. Classi�cation of integrable equations on quad-graphs.
The consistency approach. Comm. Math. Phys. 233:3 (2003) 513�543.

V.E. Adler Around 3D-consistency 11 December 2024 38 / 40

https://doi.org/10.1007/s00220-002-0762-8


Consistency around a cube

0 i

j ij

k ik

jk ijk

Let us recall that for the discrete hyperbolic
equations

uij = h(u, ui , uj ;αi , αj)

the consistency is de�ned for a triple of
equations de�ned on the faces of a cube. For
short, we use subscript i to denote Ti :

ui = Ti (u) = u(. . . , ni + 1, . . . ).

Three possible ways to compute uijk from
initial data u, ui , uj , uk should give the same
results.

A list of 3D-consistent equations was ontained in [25], under many additional
assumptions.

[26] V.A., A.I. Bobenko, Yu.B. Suris. Classi�cation of integrable equations on quad-graphs.
The consistency approach. Comm. Math. Phys. 233:3 (2003) 513�543.

V.E. Adler Around 3D-consistency 11 December 2024 38 / 40

https://doi.org/10.1007/s00220-002-0762-8


Consistency around a cube

0 i

j ij

k ik

jk ijk

Let us recall that for the discrete hyperbolic
equations

uij = h(u, ui , uj ;αi , αj)

the consistency is de�ned for a triple of
equations de�ned on the faces of a cube. For
short, we use subscript i to denote Ti :

ui = Ti (u) = u(. . . , ni + 1, . . . ).

Three possible ways to compute uijk from
initial data u, ui , uj , uk should give the same
results.

A list of 3D-consistent equations was ontained in [25], under many additional
assumptions.

[27] V.A., A.I. Bobenko, Yu.B. Suris. Classi�cation of integrable equations on quad-graphs.
The consistency approach. Comm. Math. Phys. 233:3 (2003) 513�543.

V.E. Adler Around 3D-consistency 11 December 2024 38 / 40

https://doi.org/10.1007/s00220-002-0762-8


List of 3D-consistent multi-a�ne quad-equations

(u − uij)(ui − uj) + αj − αi = 0 (H1)

. . . H2,H3,A1,A2,Q1,Q2,Q3 . . .

sn(αi ; k) sn(αj ; k) sn(αi − αj ; k)(k
2uuiujuij + 1) + sn(αi ; k)(uui + ujuij)

− sn(αj ; k)(uuj + uiuij)− sn(αi − αj ; k)(uuij + uiuj) = 0 (Q4)

❦ All these equations serve as nonlinear superposition formula for B�acklund
transformations of KdV type equations.

❦ Converse is not true, because the nonlinear superposition is not necessarily
multi-a�ne (the simplest counter-example is just the KdV equation itself).
Quad-equations which are quadratic with respect to all variables where
studied, e.g. in [28, 29].

[28] P. Kassotakis, M. Nieszporski. On non-multia�ne consistent-around-the-cube lattice
equations. Phys. Lett. A 376:45 (2012) 3135�3140.

[29] J. Atkinson, M. Nieszporski. Multi-quadratic quad equations: integrable cases from a
factorised-discriminant hypothesis. Int. Math. Res. Notices 2014:15 (2013) 4215�4240.
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❦ The consistency of Volterra type equations with quad-equations has been
studied in many papers.

❦ The large open project is to classify the correspondence

KdV type ←→ dressing chains ←→ Volterra type
↕

quad-equations

and to describe the negative �ows in this language.

[30] F.W. Nijho�, V.G. Papageorgiou. Similarity reductions of integrable lattices and discrete
analogues of Painlev�e PII equation. Phys. Lett. A 153:6�7 (1991) 337�344.

[31] F.W. Nijho�, A. Ramani, B. Grammaticos, Y. Ohta. On discrete Painlev�e equations
associated with the lattice KdV systems and the Painlev�e VI equation. Studies in Appl.
Math. 106:3 (2001) 261�314.

[32] A. Tongas, D. Tsoubelis, P. Xenitidis. Integrability aspects of a Schwarzian PDE. Phys.
Lett. A 284:6 (2001) 266�274.

[33] P.D. Xenitidis. Determining the symmetries of di�erence equations. Proc. R. Soc. A 474

(2018) 20180340.
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